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RESEARCH SUMMARY 

Since October I, 1973, we have been supported by ARPA IPT office to carry 

out research in image analysis and modeling.  The emphasis of our research in 

the past two years has been on the development of suitable mathematical models 

for images which are useful for image processing tasks such as efficient cod- 

ing, enhancement, recognition, and information extraction.  Our accomplish- 

ments have been recorded in detail in our progress reports.  We summarize 

here some of the highlights. 

A.  Preprocessinci 

We have obtained significant results in both image restoration and ef- 

ficient coding. 

I. Image phase [1]. 

Although it is well known that the phase of the Fourier transform of an 

image is generally more important than the magnitude,, most past work on two- 

dimensional digital filter design concentrated on magnitude specification only. 

We demonstrated that the phase accurary of image processing filters are ex- 

tremely important.  Even if the desired filter has linear phase, failure to 

specify it may lead to disaster.  We also developed methods of designing two- 

dinensional digital filters which specify both the magnitude and the phase. 

2. Recursive estimation. 

By modeling images as two-dimensional random fields, it becomes feasible 

to apply the Kaiman formulation of recursive estimation to Image restoration. 

However, in trying to derive the optimum two-dimensional estimator, one en- 

counters fundamental mathematical difficulties.  We have nevertheless develop- 

ed several suboptlmum estimators which In practice perform almost as well as 

the optimum. 



3.  Iterative image restoration [2,3,A]. 

Many image degradations can be approximated by linear model;,.  Then 

image restoration on the computer becomes the problem of solving a set of 

linear algebraic equations.  Because of image noise, conventional solution 

methods are unusable. We have developed an iterative method (the projection 

method) for doing the restoration which offers a tradeoff between noise and 

image sharpness. Compared to the singular value decomposition method studied 

at Purdue and elsewhere, this iterative method offers a similar performance 

with drastically reduced computation requirements. 

h.     Three-dimensional reconstruction [5]. 

We have studied several methods of reconstructing three-dimensional 

structures from two-dimensional x-ray pictures.  Specifically, we have in- 

vestigated the effects of quantization, beam divergence, and unknown beam 

strength.  It was found that 6^ levels of quantization is sufficient, that a 

bear divergence of up to 10° can be tolerated, and that an unknown beam 

strength Introduces a ring-like structure to the reconstruction. 

5.  Error-free DPCM codes for ERTS Imagery [6,7]. 

The difference statistics of ERTS imagery have been measured; and based 

on these several easily Implementable classes of DPCM codes have been develop- 

ed. They reduce the bit rate from 8 bits per picture element to about k  bits 

per picture element. A slightly more complicated adaptive code reduces the 

bit rate to about 2.5 bits per picture element.  These codes are error-free In 

the sense that they do not introduce any distortion to the Images. 

B.  Image Segmentation 

We have taken two approaches to image segmentation: edge extraction, and 

region growing. 



).  Edge extraction [8]. 

We have developed several improved local operators for edge extraction. 

They work quite well even in a noisy and blurred environment.  These operator-, 

have been applied to change detection of missile imagery with excellent results. 

^.  Region growing [9]. 

We have developed a computer algorithm called BLOB which se.^ents an image 

into regions so that points in the same region have similar characteristics. 

The BLOB algorithm was used to increase the accuracy of classifying multi- 

spectral ERTS data.  These dat. had been classified point by point using 

spectral signature.  By the application of BLOB, regional classification be- 

came possible.  This not only increased the classification accuracy (by about 

5? on the average) but also reduced the classification time (by a factor of 

of about 30:1). 

3.  Image decomposition [8]. 

Ir.age decomposition can be considered as a generalization of image seg- 

mentation,  in the latter, an image is segmented into non-overlapping regions: 

while in the former, an image is decomposed into a sum of generally over- 

laoping mages.  For example, an image might be decomposed into the sun of a 

low-spatial-frequency image and a high-spatial-frequency image.  Many image 

processing tasks are facilitated if the image is decomposed into simpler com- 

ponents anc: each component is handled according to its own characteristics. 

We have been developing algorithms to decompose an image into three components: 

edges, background ( slowly-changing), and textures.  This idea of image de- 

composition has been applied to image noise reduction.  Applying a Wiener 

filter to a noisy image reduces the noise but also blurs the edges of the 

objects in the image.  By treating the edges separately, one is able to re- 

duce the noise and in the same time retain edge sharpness. 

.■ 



C.  Pattern Classification 

i.  Texture analysis [10]. 

We have developed a set of image texture descriptors based on extrema 

along scan lines.  These texture descriptors are very easy to measure, yet 

perform as well as or even better than conventional (tedious to calculate) 

descriptors (such as the spatial-dependence matrix) in most pattern recogni- 

tion tasks. 

2.  Optimum feature subset selection algorithms [11]. 

Patterns to be classified by a recognition system are generally character- 

ized by a set of measurements or features.  Often, the dimensionality of this 

feature space is too large for efficient and reliable application of existing 

classification techniques.  The feature extraction problem is then, to reduce 

the dimensionality of the feature space, without signifIc.'intly affecting the 

discriminatory capacity of the feature set. One approach to feature extraction 

is tj  select a smaller subset of m features of the set of n original features 

(m<n).  Exhaustive search is computationally unfeasible even for modest values 

of n and m. Using a branch and bound approach, we have developed algorithms 

which cire efficient and guaranteed to be optimal.  These algorithms were 

applied to choose the best subset of 12 out of 2^ channels. There are 

2,70^,150 candidate solutions.  The algorithms obtained the best subset with 

the computational effort equivalent to computing the criterion for 6000 sub- 

sets.  The s.r/lngs are indeed substantial. 

W^WHittl.WHWW'^'liW.^ptiMl l 
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IMAGE DECOMPOSITION 

T. S. Huang and J. W. Burnett 

I.  Introduction 

In previous reports [I], [2] we have modeled Image scan lines as Markov 

jump processes. This model led to nonlinear noise reduction and image seg- 

mentation algorithms that are superior to linear techniques currently in use. 

The recursive calculation of a conditional probability Involving the 

boundary component of the scan line was the key to the nonlinear algorithms. 

Once this conditional probability had been calculated the scan line could be 

segmented using a maximum likelihood approach or noise could be reduced with 

either maximum liklihood or minimum mean square error estimators.  Further, 

since the conditional probability obeyed a recursive relationship the 

execution time and memory requirements of these algorithms were kept to a 

minimum. 

In this report we start to extend the one dimensional results to two 

dimensions. The first step In this extension is the recursive estimation of 

a t^o dimensional constant. 

I I.  Derivat ion 

Assume we have the observations 

(I)  R(x,y) ■ Ixy + BW(x,y) 

where I is one of K possible values ••, a2, ..., a and W(x,y) is a two 

dimensional Wiener process (the Integral of white Gaussian noise.) 

Equation (1) Is sometimes written as 

(1')  dR = Idxdy + BdW       or 



0")  z = 
2 

jnSr- ' +BN(x.y) 

/here N(x,y) j •■ white Gaussian noise. 

Let S  = lü 
rn   n 

t    =ai 
qn   n 

r,q = 1, 2, 3, ..., n 

n = I, 2, 3, ... 

Define nrqn - MS^, t »(S^,,,..,.,„) - R^.t^, - «(S^,,,.. ) 

From (I) 

_ "x 
rqn + BAW 

rqn 
r.q = 1, 2 n 

where 

AWrqn " W(Srn'tqn) " ^r~^   ' "^-J  + ^r-^-J 

Now AWrqn is i  linear combination of Gaussian random variables and hen 

Gaussian.  Further, since W is an independent a 

dent of AWabn for atr,   b*q.  Thus 

ce 

rea process AW   is indepen- 

IXY 
Vqn    2 

n 
r.q = I« 2 n 

2 
are independent zero mean Gaussian random variables with variance B ^ . 

,(n) 
Let P  ' • P(| - a.|R(S  ,t  ), r,q =1.2      n J j'   rn qn »  »H   »» •» t«», n 

= conditional probability the random field I has valu e a. 

given the observations R upto the point x,y. 

Note that nrqn is obtained from R by an operation that (except for some 

boundary conditions) Is nonslngular. Thus if we define R(x,y) - 0 for x < 0 

or y < 0 then 
N 

~rr -—« 



P(l  - aj|R(S     .t     ))  ■ P(l  ■ t. JTl      ) 
rn    qn j '   rr" 

From Bayes   rule we have 

(n) 
P:(x,y)  = 

M0,e) «apt-—fi—      t   (n      -^-)z] 
4 2B2xy    r.q=l     ^      IT 

K 2        n " 
s Po(o,o) exp[-~~—    E   (n 

Ä-1 2,52xy  r,q=l     ^ 

anxy~? 

-V)   ] 
n 

(2) 

where P.(0,0)   is  the a-priorl  probability that   I 

Equation   (2)  can be   rewritten as 

aj 

P. (0,0)  exp[-i-     E      n      a. 
(n) J B2   r,q-l     r*»"  j 

P (x.y)- 'Z  
J .        n 

I PJ,(0,0)  exp[-4-     S    n      a0 

ü BZ  r,q-l   rqn £ 

2 

2B2 

ajxyj 

2B 

By definition of the two dimensional  stochastic   integral   [3], 

I iff) I    a. 
^  j     ^     n 

n-    BT        r.qol     ^ 
4^/>R(u.v) 
D 

B 

Sine exp (•) is a continuous functl on 

2 
a.xy 

Pjfa.O) expEBa.RU.y) —ly] 

"« Pi(x.y) =P.(x,y) —j   *      2B 

n-K» a.        a^xy 
S P],(0,0) exp[4R(x,y) - -V] 

ÄPl Ä        B2        2B2 

Each P. is of the form 

Mx,y) a£xy 

rf£(x>y)  
where h * p£(0'0) exPfB SR^.y) - -«5-] 

2B 
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in» »x.. 

Using a result of Wong [3], I1*]   it can be shown that each f. obeys a recur- 
J 

sive relationship 

dfj(xty) - B"
,ajfj(x,y)dR(x,y) + 

•2 ?., r^rY B •jfjU.y)/;/;; ciR(f1,y)dR{x.f2) ik) 

Thus an incremental change in each f, can be calculated by knowing the 

"present value" of f. and the present value of the observation (see Fig. 1). 

III.  Conclusions 

Equation (k)   is significant in that it gives a two dimensional recursive 

method for calculating a conditional probability.  From (*♦) we can recur- 

sively calculate each f. and hence each P.. While this result may not find 

widespread application it nonetheless represents the first step in deriving 

a recursive expression for a conditional probability when the random field I 

(1) is a Markov jump process. 
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Figure 1  Recursive Calculation of df(x,y) from 
past values of f(x,y) and present values 
of dR(x,y) 
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DIGITAL EDGE RESTORATION IN 
LINEARLY FILTERED IMAGES 

D. P. Panda and A. C. Kak 

I.  INTRODUCTION 

Linear minimum means square error (MMSE) estimation techniques have com- 

monly been used in restoring images degraded by the imaging system and observed 

in the presence of additive noise (see [1] for brief survey).  These techniques 

often distort the "edgcä'' of the restored image. The cause of the distortion 

is the fact that the edges mark the boundaries between two adjacent "clusters" 

of different local statistical properties and the estimation of a picture 

element (pixel) in one cluster nearby.  Depending on the intended use of the 

restored image the edge distortion may or may not be too undesirable.  If the 

image is meant for the human visual system (HVS) then it is desirable to have 

sharp and undistorted edges in the image.  This is so because, as Hunt [2] 

pointed out, the frequency response of the HVS is such that it differentiates 

the lower spatial frequencies and amplifies the higher spatial frequencies 

which amounts to emphasizing the edge contents of the image.  When a linear 

MMSE restoration filter does not have any edge preserving constraint or measure 

it shall be necessary to find a post-processing technique which would enhance 

the edges in the restored image (the term restored Image is used here to mean 

the output of the linear MMSE restoration filter). Many frequency domain 

methods are already available for edge enhancement.  One such frequency domain 

technique is due to Schreiber [3] in which he subtracted from the Image a 

weighted low-pass version of It to Increase the relative amplitudes of the high 

spatial frequency components and restore some of the sharpness.  Frequency 

domain operations may be preferred when being Implemented optically.  But in 

digital implementation spatial domain operations are expected to be more 

s 
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attractive than frequency domain operation from the storage and computation 

point of view. We present here a spatial domain post-processcr for the en- 

hancement of the edges in the images restored linearly by the MMSE criterion. 

1'•  EDGE DISTORTION IN LINEARLY FILTERED IMAGES 

There are several ways the edges in an image can be modelled.  Each of the 

many edge detection schemes devised by various researchers Is based implicitly 

on a specific model of the edges.  In terms of power sp-ctral density the 

edges contribute to the relatively higher, spatial frequency components of an 

image.  In some spatial domain edge detection methods an edge is defined as the 

5«t of pixels that mark the transition of the local mean grey level fron one 

value to anuuher, while In other methods the change In the variance of the grey 

levels is also taken into account.  Whether it Is the first, the second, or the 

higher order statistics that are used for edge detection It is obvious that the 

edges are the boundaries of regions that contain different local statistical 

properties.  When these local properties are used as features In a clustering 

procedure the above mentioned regions cluster together in the feature space. 

These clusters in the feature space are separated from one another by the edges 

in the image space and, in general, correspond to different objects in the ob- 

ject space (see Fig. 1).  Researchers In the area of remote-sensing make use of 

this concept in the spatial clustering of multi-image data and scene classifi- 

cation (see, for example, Haralick and Dinsteln [5] and Gupta and Wlntz [k]). 

We shall use here the terms edges, "cluster boundaries", and boundaries inter- 

changeably. 

When a linear estimator Is used for filtering, the local properties if an 

estimated pixel are affected by the local properties of all the pixels Included 

in the observation set for estimating that pixel. Therefore, in the neighbor- 

hood of the boundaries of two clusters the estimated pixels will have local 

13 
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properties depending on the local properties of bot1! the clusters rather than 

just the cluster to which the pixel belongs. 

Defi ni tions 

Let sCp.q) be the grey level of the image at the point (p.q).  Suppose 

the image is scanned in certain direction 6, 0 < 9 < 7..  In any particular 

scan line we define a run R as the set of consecutive pixe,s Such that the 

grey level of those pixels is monotomically increasing or decreasing.  If 

(Ppq,) and (p2,q2) are the two end points of the run then we define the con- 

trast of the run as 

C(R) = \s{p],q])   - s{p2,q2)\/[s(P],q])   + s(p2,q2)] 

and for any point (p,q) in the run we define sharpness 

Vp.q) = C(R) 

((Pj-P,,)' + (q,-^)*) 
072" 

We define the sharpness error criterion between an image and its estimate as 

e(p.q) = Z     [y (P.q) " ^(P.q)] 
6=6 

where ' indicates the value in the estimated image. 9,, 62 6k are k dif- 

ferent directions along which the images are to be scanned for computing tl 

e r ro r. 

:he 

HI.  EDGE RESTORATION 

Since the effect of pixels from one cluster on the p .1. of a neighboring 

cluster near the boundary Is the cause of the edge distortion, if we introduce 

in the linear filter nonllnearity nea,- the boundary such that an estimated 

Pixel of a cluster is a linear combination of pixels of only that cluster then 

we should expect a great reduction In the distortion.  But if no such attempt is 

H 



made to prevent the edge distortion in the linear filter then a post-processor 

is needed to correct the possible distortion In the Image.  The post-processor 

presented here does this correction in the following steps.  First it detects 

in the output of the linear filter the boundaries between adjacent clusters. 

Then it changes the grey levels and the gradients of the pixels in those re- 

gions in such a fashion that the sharpness of the boundnry is increased.  If 

needed, it smooths out further the regions that do not constitute the boundary. 

Edge Detection 

Let sCpj.q,) and s(p2,q2) be the grey levels at pixels (p,^) and (p2,q2) 

in adjacent clusters 1 and 2, respectively.  We will assume that s(p ,q ) and 

s(p2,q2), respectively, are Gaussian with means ^ and u2 and variances a2,  and 
2 

a2. Also, for tractability In deriving the boundary detection algorithm we 

will replace the expression for contrast of a run R by the following 

local contrast C(R) = (s(k,il) - s(l,J))/2y (1) 

where y is the average grey level of the region, and (k,£) and (i,j) are the 

maximum and the minimum end points, respectively, of the run R.  When the run 

R is across a boundary those points will not be In the same cluster.  Let 

D(R) = «(M) - s(l,j) 

For a run R across a boundary the conditional probability density of D given 

that a boundary has been detected Is given by 

PD(d|B) - N(ub,0b*) (2) 

where B is the event that an edge has been detected, y and a* are the mean 
b     b 

and the variance respectively of the Gaussian density function. These para- 

meters are given by 
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H> = M2 ■ Ml 

ab = al  + ^ 

(3) 

If Instead the pixels {k,i)  and (l,j) belonged to the same cluster, say cluster 

1, i.e., (k,£) and (i,j) are two pixels at the opposite ends of a run of nono- 

tonically increasing or decreasing grey levels but the region between then is 

not a cluster boundary, then 

PD(d|C) a N(yc,ac
z) (A) 

where C denotes the event that the run Is Inside a cluster. The parameters of 

2 
the Gaussian density function N(y ,a ) are given by 

and 

yc = 0 

2  o 2 o  = 20. 
c     1 (5) 

If it is assumed that in the output of the linear filter the runs are of 

approximately equal length then given a particular value of D(R) whether or 

rot the run R is across a cluster boundary Is now a pattern recognition prob- 

lem.  If P(B) and P(C), respectively, are the prior probabilities of the 

existence of a boundary and a cluster In a particular region then the Bayesian 

solution to the pattern recognition problem Is 

old 
pld 

B) P(B) .. 

cTTTct >] implies B 

implles B or C 

< 1 Imp]les C (6) 
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Using appropriate Gaussian densities for p(d|B) and p(d|c) we get the d 

criminant functions, 

9b(d) = " 7T" + -2~- j (-2 + ^g Ofc) + 'og P(B) 
b   b       b 

is- 

, .2  dp   i  M 
(d) = " 2-7+7£  2 (T+ l0g V + ,og P(C) 

c   c      c 
(7) 

In terms of the discriminant function, (6) can be expressed as 

gb(d) - gc(d) > 0    Implies edge 

< 0    imp 11 es no edge (8) 

There exists a tradeoff between the accuracy of the detection of boundary 

and the speed and the cost of computation Involved. Where as using both the 

first and the second order statistics Is expected to give better performance 

cost. Often just the first order statistics gives satisfactory results with 

less cost.  Hence, we take the variance a^ and a*  to be equal (= a2) thus re- 

ducing the complexity of the discriminant function as shown below 

2   2  „ 2 a = a = 2a b   c 

Therefore 

gB(d) 

gc(b) 

l*o 
+ log P(b) 

du, 

2o: 

dp   y* 
—£■- -^-+ log P(c) 
2CJ   lvl 

The decision rule now Is 
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d   > t   ►   edge 

< t ■♦■   no edge 

where   the   threshold  t   is 

2     2 

t  = »a2 
■ + log P(c) 

p(b) 

V Mc 

2a 

The probability of error of the classifier is decreased, at   ihe  cost of a 

ittle computational complexity, by changing the decision rule as follows: 

9|(d) " gc(d) > tb+ boundary 

< t ->• no boundary 

otherwise undecided 

When undecided a new run of monotonically increasing or decreasing grey levels 

is added to the previous run.  This process is continued till a boundary is 

detected.  The width of the boundary is the cumulative length of all ,jns used 

in making the decision.  Since the edge width in the output of a linear filter 

does not distort without limit an empirically determined threshold can be set 

for the cumulative run length,  if at any time in a decision making the cum- 

ulative run length meets the threshold "no boundary" Is decided. 

Boundary Enhancement and Cluster Smoothing 

The sharpness of the edge can be increased either by increasing local con- 

trast or by reducing the boundary width. To increase the contrast by a small 

fraction we must increase or decrease the grey levels In the boundary region 

18 
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to a great extent which will be "cut of step" with the rest of the pixels in 

the cluster, thereby creating artifacts.  For example, if 

82(M) ■ 75 

SjO.J) = 25 

contrast 75-25 
75+25 

1/2 

Increasing s2(k,£) 5 times to 375 *. decreasing ^(IJ) 5 times to 5 gives 

con trast = 121^5 _ 350 _ 7/fl 
trast     375+2T " TOO - 7/8 

or 

contrast =2|I|= 70 ^ v% 

which is even less than a twofold improvement.  But decreasing the boundary 

width to, say, 1 gives a very large order of improvement in the sharpness. 

This improvement is proportional to run length.  The worse the edge distortion 

is the larger is the run length and consequently the higher is the improvement 

in tie sharpness of the edge. 

The boundary width is reduced by a nonlinear mapping of the grey levels by 

which the grey levels above the midpoint get mapped to ^(k.Jt) and those below 

the midpoint get mapped to s.Oj). 

The next step after enhancement of the edges is the smoothing of the in- 

terior of the clusters. This smoothing may or may not be necessary depending 

on the residual noise present in the linearly filtered Image.  If, for example, 

the linear filter, such as the one by Habibl [6], is the kind that used the 

image correlation coefficients as its parameters then the amount of residual 

noise in a cluster in the filtered image might depend on how well the corre- 

lation coefficients used in the filter design match that of the cluster under 

19 
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- 
co„5,daratlo„.    U.u.11, the corr.!«.«, coeff.Cents have  to he est,mated fro. 

one or a  few ..„*,.   ,mages and un,ess  the  re5toration  fMter  ^ ^^.^   ^ 

«Ml  bo  ^„m. for  It  to ,:etch .!,   the dusters encountered.    When needed, 

«he  sn„othln3   is  done   In  the post-processor  hy a  simple first order digital 

recurs.ve filter.    The pole-zero  iocaUons of the fl.ter »ay be controlled  to 

get   the desired amount of smoothing. 

REFERENCES 

[1]     T.   S.   H 
rocessing," 

T.   S.   Huang,   W.   F.   Schreiber,   and 0.   J.  Tretiak    "Im;,™  P 
floc^JJEEE,   Vol.   S3,  No.   11,  pp.   I586-i6(59X;   mV 

^    ^-^r^rM1?^!   ,rna9e  PrOCeSS^."^-JIÜ.  Vo,.   63.  No.  4,  PP. 

[3]    W    F.   Schreiber    "WFrephoto Quality   Improvement  by Unsharp Maskina " 
Pattern  Recognition,   Vol.   2,   pp.   117-121,   I970. unsrarp asking, 

[5]     R.   M.   Haralick and   I.   Dinstein    "A  SnaH^i   n,.,.»     • 

[6] 6i.t.ib;; ZTlXX^in'r r-st'raate5 of "*-•-tmusu, vol. 

20 

" - -.—-...   — . 



I 
I. 

3 

V .-.  o 
in 4- 
3 

«I       f  
— -a 
3 

C 
O 
O. «n 
/» *J 
0) u 
u <u 
i- —i 
O XI 
o o 

en E 
(0 4) 
E w 

0) i/l 

x: 

c 
(1) 

X) 

% 

CD 

0) 
4-1 
u 
V 

4> 
L. t M 

a 
u 
«o 
Q. 

to 

u 
0) 

XI 
o 
0) x: 

E 
O 0) 
l- o 

«»- w a. 
c co 
o 
«- 0) 
4-1 O) 
|| 
L. — 
o 

«4- 0) 
in x: 
C 4J 
1 
«- O 

u> 

I 
u 3 
o 

21 

— .| . ^n*i 



i 

I 

•  3 

i 

Figure 2 A test Image blurred by a Gaussian shape 
point spread fmct'w and observed in the presence 
of additive observation noise 

smi-.imk . 

■ 

Figure 3 The image of Fig. 2 filtered by a linear 
filter. 
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Figure  5     The   image of  Fig.   A with  grey   levels  of zero 
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IMAGE SEGMENTATION BY UNSUPERVISED CLUSTERING III 

M. Y. Yoo and T. S. Huang 

I. Introduction 

This is a continuation of the work reported in the last two 

interim reports. The basic philosophy of this work was presented in detail 

before and only the new clustering algorithm which was used for this work will 

be discussed. 

2. Clustering Algorithm 

We use the non-parametric clustering algorithm developed by Fukunaga et. 

al. [1]. For large sample sizes this algorithm becomes basically the same as 

the valley seeking algorithm [2]. 

The only difference in our Implementation Is that the conditional proba- 

bility density function (this Is not an actually normalized probability 

function;  the value of the function denotes the number of points which have 

the same features In the original Image) In the Mature plane Is available 

rather than sampled vactors. The algorithm consists of three major steps: 

I) determination of neighborhood; I?) searching of roots; 111) assignment of 

parent. 

Let Xbe the Integer pair In the feature plane (our features are quantiz- 

ed to Integer levels), and D(x) denote the number of points In the original 

picture which have the feature X". The neighborhood of X Is the set defined as 

n9(X) MY | d(X,Y> 1e,x ^ 7} 

where 8 is a preset parameter and d means Euclidean distance. 

Then the total number of the original Image points which has the feature 

In the neighborhood nQ(X) Is 
6 
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Ne(x)   =       E D(Y) 

Yepe(X) 

We define  the  factor G.   (X,Y)  as 

Ga   (X,Y)  = 
N9^   -  N9(7) 

dor.?) 

Actually GQ(X,Y) is the discrete version of the directional derivative.  Then 

the algorithm is follows.  If ^(X) is empty, we call X root, and If the 

neighborhood of X Is not empty, we calculate SQ(X,7) defined as 
9 

S0 (X, Y) = MAX GQ (X,Y) 

Yene(X) 

If Se(X,Y) is negative, x" Is also called root and If Se(X,Y) Is positive we 

call Y the parent of X.  Se(X,Y) = 0 case Is a little bit complex and we 

recommend the original paper for details. 

Therefore, every point In the feature plane are either classified as 

roots or given the parent r-latlonshlp.  (roots do not have parents.) Every 

point except roots are merged Into one of the searched roots by parent re- 

lationship and the number of roots determined that of clusters. 

3. Experimental Results 

The number of clusters Is very much dependent upon the size of the para- 

meter 6 which Is used when we define the neighborhood. Smaller e gives too 

many artificial clusters and larger 6 classifies the whole data as a cluster. 

The appropriate size of 6 for this work was 3. For large size data 

there is a serious storage problem, and some preprocess for "throwing away" of 

irrelevant data is highly necessary. We shall present some experimental results 

in a late*" report. 
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TEXTURE BOUNDARY DETECTION 

0. R. Mitchell and W. K. Chan 

In an attempt to develop efficient image segmentation algorithms, we are 

concentrating on texture boundary detection.  Most edge detection algorithms do 

not use texture information at all.  Our initial algorithms use texture infor- 

mation exclusively.  The combination of texture and gradient-type boundary 

detectors will be done following our development of the texture edge detection. 

The present procedure uses the Max-Min method of texture analys isdescribed 

elsewhere in this report.  However, instead of using the method for a texture 

classification, a max-min feature computation is performed in two opposite di- 

rections from a point in the picture. The resulting features are compared.  If 

the featu-es in opposite directions differ significantly, we mark the center 

point as a candidate for a texture edge. This calculation is performed itera- 

tively as we move the center point across the picture. Peaks in feature 

differences indicate texture edges as shown in Fig. 1. More resolution to the 

edges is found by repeating the scan In directions perpendicular to suspected 

edges. 

Future improvement to be added are the automated selection of scan length, 

L. based on a regional autocorrelation and the syntactic joining of loosely 

connected edge points to define closed boundaries. 
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Fig 1. Typical Texture Scan and Resulting Edge Detection 
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MAX-MIN MEASURE FOR IMAGE TEXTURE ANALYSIS 

0. R. Mitchell and W. A. Boyne 

I.  BASIC MAX-MIN MEASURE 

This project is a continuation of that described in the May 1-July 31, 

1975 interi. report [!].  This texture .easure is based on the intuition that 

important texture information is contained In the relative frequency of local 

extremes in intensity.  The grey levels values along a one-dimensional scan 

direction are first sent through a smoothing process which eliminates reversals 

of small amplitude, thereby retaining only the principal extrema. 

The smoothing algorithm Is described as follows:  let xk be the grey level 

of the kth point along the scan line and let yk be the "smoothed" value.  Let 

T be the value of a preasslgned threshold parameter.  Let us start with y =x 

and proceed according to the algorithm shown below: 

IF THEN 

v < x yk  xk+l 
T 
2 

Vi "I^k'Vitl 

Vi + F < Vk 

T 
2 

yk+l ■ Xk+l 

Vl = \ 

'k+l ^ Vl + J 

Figure I illustrates the way in which the smoothing process eliminates rever- 

sals of snail amplitude.  Implementation of the extrema detecting algorithm Is 

shown in .he flow chart in Fig. 2.  B7 repeating this process for several 

threshold settings, a group of extrema counts can be obtained to characterize 

the texture.  An example is shown In Fig. 3 using three different threshold 

levels. The set of numbers (6,10,1*) would characterize this "texture". 

To make the features Invariant to multiplicative (gain) changes the lotJ- 

rithm of the data Is used.  Since 

29 

-r^.,^^-„.,  "-■■■ ■ - 



— • ■; . 

log a - loq b = log k - log k. , 
a       b 

the extrema count in Fig. 3 is unchanged following a gain chan ge. 

II.  CLASSIFICATION RESULTS 

The texture data used has been described previously [1].  Forty-nine 

6^x6^ samples of each of eight textures were used.  The ratios of the number of 

extrema at each selected threshold to that at other thresholds were used as 

features.  The threshold settings were chosen empirically to be 130, 110, 90, 

70, 50, 30, and 10.  (The data was already in log form, ranging from 0 to 255.) 

Training set data showing the feature values for a few of the texture sanples 

is shown in Table 1. 

The ^9 samples of each texture were divided into 36 training samples and 

13 test samples.  Then six features were calculated for each sample and two 

classification techniques were used:  (I) a simple normalized Euclidern dis- 

tance measure with all features weighted equally, and (2)  a three nearest 

neighbor decision rule.  Each texture was classified as a point in 6-dimen- 

sional feature space.  For the first measure, a mean and standard deviation 

in each dimension were calculated for each texture from the training samples 

and the distance for an unknown sample from the test set was measured fror 

the mean in standard deviation units.  The results are shown in Table 2.  Also 

included in the table are results using another technique discussed in the 

next section. 

The classification matrix for the method using the 3-nearest neighbors 

decision rule is shown in Table 3. The most common confusions using the max- 

min method occur among wood, fur, and water, and between paper and cork.  It 

seems that the distance measure created by the algorithm is similar to that 

used by humans in grouping textures. 
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III.  COMPARISON WITH SPATIAL-DEPENDENCE TECHNIQUE 

The most common texture classification techniques use statistical mea- 

sures based on spatial dependence probabilities.  In order to make the tech- 

niques comparable, we limited the technique described by Haralick et.al. [2] 

to 6 features and to one dimension. We used 6^ grey levels in the spatial 

dependence matrix.  The best results we could obtain in using this technique 

was 83%  accurate on training samples and 66%  accurate on test samples as shown 

in Table 2. The classification matrix for the result is shown in Table k. 

With 1^ features in each of two dimensions the spatial dependence technique 

accuracy was increased to 3k%  accurate on training samples and 83%  accurate on 

test samples.  However the computation times on the CDC 6500 were indicative 

of the relative efficiency of the Max-Min Technique.  The total feature gener- 

ation and classification for ^9 samples of each of 8 textures required 250 cpu 

seconds for the 6 feature Max-Min Technique, 8^5 cpu seconds for the 6 feature 

spatial dependence technique, and 1690 cpu seconds for the 28 feature spatial 

dependence technique.  However, It should be noted that little effort was made 

to minimize the running time of any of the above techniques. 

IV.  DISCUSSION 

The max-min appears to be a promising measure of texture characteristics. 

The method has presently been used In one dimension only.  One two dimensional 

extension would be to measure the max-mln features In several directions and 

use Lhat direction which maximizes some criteria plus the orthogonal direction. 

This would make the algorithm Invariant to texture rotation as well as adding 

a measure of the rotational symmetry of the textures.  The method mighi also 

be used to detect texture boundaries by measuring features In two opposite 

directions from a suspected boundary. 
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It is fairly easy to incorporate the computing required for the max-min 

feature extraction in special-purpose hardware.  This would make real time 

texture analysis possible.  This is very important for ap',1ications such as 

steel mill output monitoring where a decision must be reached quickly as to 

whether to let the metal continue cooling or to reprocess it. 

Also the quantities measured here (number of extrema vs. threshold) might 

be called a first order effect.  The two curves for cork and paper in Fig. 6 

are almost identical and confusions might necessarily be expected in a clas- 

sification algorithm which uses only slopes of these curves.  However, second 

order measurements which Include information as to how the small extrema are 

interspersed among the large extrema would differentiate between these two 

textures.  This might be the beginning of a hierarchical structure of texture 

primitives:  those that differ In first order measurements and those that 

differ in second order measurements. 
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Fig.   I     Backlash smoothing and extrema  identification for a  threshold distance 
of T. 
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Table 5  Training Set Data Showing ths Feature 
Values for a Few Texture Samples 

Feat ures 

1 2 3 4 5 6 
Name of # @ 130 a § no 

# § 90 
# @ 90 
# @ 70 

# @ 70 
# @ 50 

# @ 50 
1 i 30 

# P 30 
Texture # i 110 # g 10 

04  Cork .7624 .7637 .7338 .5&77 .6246 .6793 

04  Cork .7126 .7767 .6782 .6788 .6227 .6287 

04  Cork .4957 .6964 .7671 7821 .7467 .5327 

070 Wood 0 .0385 .2653 .3793 .5228 .6520 

070 Wood 0 .0405 .3318 .3940 .5345 .7209 

D70 Wood 0 0 .0641 .3805 .3721 .4398 

057 Paper .5943 .7465 .7513 .8008 .7173 .4301 

057 Paper .6182 .6875 .7619 .6383 .5557 .5267 

057 Paper .5319 .6812 .7886 .7479 .7112 .4202 

D9  Grass .6373 .7751 .8328 .7456 .7817 .6636 

09  Grass .6854 .6893 .7536 .7765 .7447 .6904 
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Table 2 Classification Results Using 36 Training 
Training Samples and 13 Test Samples of 
Each of 8 Texture Patterns 

Features Used %  Correct 

1. Max-Mln Method 
Extrema Ratios, 6 Features 

2. Max-Min Method 
Normalized Extrema Ratios, 
6 Features 

3. Spatial Dependence Method 
6 Features, One D!menslon 

b.   Spatial Dependence Method 
28 Features, Two Dimensions 

3-Neai ist Neighbor 
Decision Rule 

Training 

93.8 

86.8 

82.7 

Test 

83.6 

79.8 

66.3 

89.^ 

Weighted Distance 
Decision Rule 

Training 

72.9 

77.1 

64.9 

87.2 

Test 

72.1 

73.1 

55.6 

81.7 
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Table 3  Classification Matrix for Max-MIn Method Using 
6 Extrema Ratio Features and 3-Nearest Neighbor 
Decision Rule 

Textures 

M Cork 1 

D70 Wood 2 

D69 Wood 3 

D93 Fur k 

D2S  Sand 5 

D57 Paper 6 

D38 Water 7 

D9 Grass 8 

Assigned Category 

Training Samples Test Samples 

1  2  3  A  5  6  7  8  I 1  2  3  ^  5  ( 

32  -  -  -  i  3  -  - 

-3i>--__2  - 

--32  4  --__ 

'-  -  - 35 - - -  1 

----34 2 -- 

2  -  -  -  2 32 -  - 

-2  -  -  - - 34 _ 

-  -  "  1  -  -  - 35 

7  8 

9 - - - - i, _ _ 

- 12 - - - - i _ 

--10  3  --__ 

-2  5  -  - _  6  „ 

-------13 
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Table <l Classification Matrix for Spatial Dependence Method 
Using 6 Features and 3-Nearest Neighbor Decision Rule 

Assigned Category 

Training Samples Test Samples 

Texture 

Ok     Cork 1 

D70 Wood 2 

D69 Wood 3 

D93 Fur li 

D29 Sand 5 

D57 Papfer 6 

D38 Water 7 

D9 Grass 8 

1 8 

29---7--- 

- 25 10 - - - 1 - 

-i*32---__ 

- - 1 3^» - - 1 - 

1 - - - 30 1 4 - 

1 - - - 5 29 1 - 

----2-31»- 

1  -  I  -  3  -  - 31 

I 5 7  8 

-93- 

- A 9 - 

-328 

3  1  - 

6 6  - 

9  -  - 

-  -  -  -  A  1  -  6 
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APPLICATION OF OUTER-PRODUCT EXPANSIONS TO 
FEATURE EXTRACTION IN PICTURES 

K. Fukunaga and G. V. Sherman 

A brief description of the two-dimensional version of the subspace method 

follows.  For simplicity square nxn pictures will be assumed.  First a 

representation space is constructed for each of M classes.  A typical repre- 

sentation space is characterized by the orthogonal projection operation Q(«) 

m m 
c   r T 

Q(A) ■ E E ($! A i/;.) (j). / 
i=l j=l '    J   '  J 

(1) 

where A is a random nxn picture, and m < n, m < n.  m and m are the column 
c —    r —     c     r 

space and row space dimensionalities respectively and are selected so that 

about SOZ  to SSI  of each column or row squared norm is contained In the repre- 

sentation space on the average.  The { *. } and { H». } 1 = 1,...,n are arbitrary 

orthonormal bases. However, two bases In particular have been found to work 

well. The first is the two-dimensional Karhunen-Loeve transformation [1] In 

which the { <J) .} are eigenvectors of the sample autocorrelation matrix obtained 

from all columns of training pictures in a particular class.  Similarly the 

< -. } are derived from the sample autocorrelation of picture rows from the 

same class. 

The other basis referred to Is obtained by selecting the { * J and {tf  } 
i        i 

as the singular vectors of the singular value decomposition of E U) [2] where 

expectation E Is restricted to the class in question. 

Feature spaces Q" are obtained from the representation spaces Q by either 

(2) or (3).  Subscripts Indicate class labels. 

This work was supported in part by NSF Grant GJ-35722. 
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Q. = 

M 

Qkn ( n QJ (2) 

M 
Q^ = 0, n ru" Q£nQk)  . (3) 

The intersection of two subspaces is defined to be the subspace contained in 

both of the original two subspaces [3].  The union of two subspaces is defined 

to be the subspace consisting of all linear combinations of vectors original 

ting from the original two subspaces.  Note that we are dealing with the 

vector space of nxn arrays. 

Our research has shown that (2) and (3) are definitely not equivalent. 

Part of this phenomenon is due to failure of subspaces to satisfy the dis- 

tribution law of logic.  Namely 

<*! n (02 u a3) 4 (Qj n Q^ u (a, n ty CO 
and 

Q, U ((1,0 Q3) 4 (Q, U Q^ nCft, U Q3) (5) 

However, further research is needed to study this phenomenon. Algorithms for 

calculating Q, U (^ and ^ n Q2 exist but will not be discussed for brevity. 

Classification is accomplished by minimizing criterion ./(•). 

m  m 
c  r 

J" (k ) - min  E  T. 
k    1=1 j=l 

♦ t(k)  (A-^A}) ^k) 
* A « «     (6) 

if class ü)ko minimizes J (•) over all other classes a», then random picture A 

is classified into class u . 
ko 

Experiments with this method on the 24x2^ Munson handwritten numerals 

demonstrate a phenomenal feature extraction capability. A 75%  reduction in 

*1 



the number of features, fron, 576 to 1^. results in a mere 2.53: decrease in 

classification accuracy. 

Further research is needed to relate the intersection of feature sub- 

spaces to intrinsic dimensionality, data dimensionality, number of classes, 

and classification error.  The power of this method lies in its reliance on 

data structure determined by training samples rather than dubious parametric 

forms. 

Preliminary investigations in these areas are promising.  For instance 

we already found that M subspaces always intersect if the sum of their 

dimensionalities is strictly greater than (M-l) times the dimensionality of 

the observation space.  So the problems are solvable. 
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A  BRANCH AND  BOUND  CLUSTERING ALGORITHM' 

K.   Fukunaga and  P.M.   Narendra 

In  clustering,  each of N samples   is assigned  to one of clusters 'j.,... ,0)   , 

where   the  number of  clusters,  M,   is  assumed  to be  prespecified.     Then,   there 

are  M    possible  assignments and  they are expressed   in  a  tree  form as  follows: 

SAMW.fi 

*3 

X H 

Fig.   I 

In order to apply the branch and bound method successfully, we have to come up 

with a proper criterion to evaluate each node so that the branches under the 

node can be eliminated from the search. 

One of the popular criteria which has been used In clustering frequently 

is J = tr s' S where S and S are the mixture scatter matrix and the within- 
m  w       m     w 

class scatter matrix respectively.  Since the coordinate can be selected to 

satisfy S = 1, we may use J = tr S .  This criterion was first used in 
'  m    '      ' w 

ISODATA [1], [2].  Thus, our problem is to find the cluster assignments, 

c. c.. so as to minimize tr S . 
I'M w 

This work was supported in part by NSF Grant GJ-35722 
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When   the  search comes  to a node  at  the  k-th   level,   c] c    are already 

given   (for example,   c,   = u]   and c2 = u    for  the  node A of Fig.   1),   but 

ck+l CN cou,d be anything.     Therefore,   if we  can calculate either  C. ..,?!",C. 

J\Cp..,,c^,   ck+j CN^or t'1e   iower bound of  that 

L\C. ,.,,, C|^ / k,   Ic^fl?..,^   J(cr--"Vck4i cN) (0 

then with   the  satisfaction of 

B    L L(fJ ck) 

all branches under the node can be eliminated from the search where B is the 

current lowest J found up to the present. That is, all possible cluster assign 

ments under the node give larger J's than the one which was already found. 

The tighter the lower bound Is, the more branches are eliminated effectively 

from the search. 

Our study revealed that the wlthln-class scatter criterion has a nice 

property as 

N Jfc,,...,^) > k J(c r ) + (N-k) Jic.^, rj 
k+1 'N' (3) 

where J(c]P...,ck) is calculated from the within-class scatter matrix of 

Xl Xk with c,uster assignment c, ^ and J(ck+) cN) is for 

k+1 AN Wlth Ck+I'-*"CN*  Let J (ck+r-,-,cN) be the criterlon val.  for 

the optimum cluster assignment when only a subset'{ Xk+1 XN} is cc. oidered. 

Then, J (ck+],...,cN) lJ(ck+| cN), and (3) Is hounded from the lower 

side as 

N J(C| h*  ^k J(c1 ^  + ^-k) Ack+1 cN)   {k) 
The  right-hand side of   (k)   Is  Independent of the cluster assignments  for 

Xl<+1 X
N»  and provides  the  lower bound of   (1). 

M 



There are many possible ways to calculate J (c. A1... .«C.,).  One is to 
K+1        N 

start from J (cN) and to calculate J (c^,,^), j' (cN_2, c^p cN),... success- 

ively.  The branch and bound method with the node evaluation of CO gives an 

efficient way to do this successive extension.  When the number of samples 

becomes large, we may divide the samples into L groups,'{X  X. }, 

1 
l\+l»"'fX|}»*«'>  X   +i»'««.X|}(k=N).  The cluster assignment of 

• £ L— I L 
each subset is optimized as was mentioned above, keeping the results of the 

intermediate optimizations, J (ck ), J (ck H, c, )   Then, two subsets, 
I      "i     i 

for example ( X.,..,tX. } and ' ^ X +.t,.,,X. }, are combined to form a new la 

larger subset.  For 1 <_k <k., the lower bound is computed by 

(kl + k2) J(cl ck1+k2 
) > k ^(c, c.) + (k - k) J^c. .,,...,c, ) k+1 

+ (k - k ) J (c  ,,...,c ) 
H1     '2 

(5) 

Thus, L subsets are grouped to larger L/2 subsets, and they are again grouped 

to LA subsets and so on. 

The procedure to calculate the lower bound mentioned above is only one 

example among many possibilities.  We would like to try many others.  Also, we 

would like to apply this idea to other criteria, particularly to the valley- 

seeking clustering. 
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IMAGE RESTORATION USING THE PROJECTION METHOD ALGORITHM 

T.S. Huang, M. Kaveh and S. Berger 

'•  Introduction 

The projection e.gorithn, hes sho„n promise as an effective method of 

i"a<,e restoration,  it is „ell-suited to the treatment of Hnear spatiaily- 

variant degradations. Also, certain types of a priori information that my  be 

avaiiabie about the orinlnai image can be easily incorporated into the restor- 

ation process. 

The algorithm Sas been app,ied to both one and two-dimensional signals in 

order to evaluate i.s potential as a restoration technlgue. The results which 

are outlined  in  this  report  indicate that the algorithm can be an effective 

method for  the  restoration of  images. 

2.   The Algorithm 

if the degradation of a two-dimensional   Image can be  represented by 

9(x.y)   -   D[f(x,y)J   ♦„(„.„).  „here  f(Xiy)   „   ^ or|gina|   ^^^   ^^   ]s 

oolse, 0  is a degrading operator, and g(x.y)   Is  the degraded  Image,  than  tha 

purpose of the  restoration process is  to approximate  the original   Image a, 

closely as possible.    The degrading operator  is assu^d to be  linear although 

space-variant. 

If we neglect noise, the discretlzed version of the degradation is: 

9i =anfi+ai2
f2+--+a,NfN 

92 = a2]fl+ •*• +a2NfN 

9M = aMJf)+...    ,3^ 

where N may not equal M.  The projection algorithm Is an iterative te 

for solving this system of equations. 

chnique 
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The solution Is obtained by successive projections onto planes in hyper- 

space.  For the case where a unique solution does exist, the algorithn v/i11 

converge to the point of intersection of the hyperplanes.  If the planes do 

not intersect at a single point, the algorithm will converge to a point which 

may be a useful approximation in a restoration sense. 

The mathematical form of the algorithm is given in vector form.  Let 

f " (f. .f,,... ,0 be a point in N space.  If the Initial guess at a solution 

is f_   = f.   ,f   ,...,fN  , the new solution is the projection of the 

point f_        onto the hyperplane g. = ai 1 ^]+« ••■t3 if/kj*  ^0 

rr(o)     1 

fo) = f(o) £ ^Lfjia 

where a. = (a.. ,a,„ ,... .a,.,).  The next iteration consists of the projection 
I      II  IZ      IN 

of f/  onto the hyperplane 9* ■• •« • f_ where a. ■ (a2.,... »a...), This pro- 

cess is continued to the Mth plane.  This completes one cycle of iteration. 

3. Results 

The effectiveness of the projection method has been evaluated for 

several test cases.  One test involved a spatially variant degradation in the 

horizontal direction.  The original test image was an "X" in a 128x128 

pictule array.  The intensity of each picture element was represented by an 

integer from 0 to 25^.  The Image arrays were stored on magnetic tape in a 

compacted format.  The Gould electrostatic plotter was used to obtain half- 

tone reproductions of the images. The restoration was Implemented on a CDC 

65OO computer. 

The degradation was a smearing which Increased its effect toward the 

edges of the image.  The points on the vertical center line were not affected. 
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BV apP,ving  the proJ.ct|M a,gorithmi   ^   ^^ was ^   ^^^^^^ ^^ 

w.th e.c.   ,t.r.tlon.     ^^^   the effect of any ^^ ^^  ^^  ^^^^^ 

So   .he  UMr „„.,„ have   to dccide uhich   .^^^^   ^^^   ^^    ^^^ 

restoration. 

The perWance of  the proJecUo„ TOthod „as a,so   rnve5tigated  ^ a one_ 

—..ona, .Ig„.t.    The origina, si9na, ^^^ of ^ ^^ ^^^ 

- ^ a s™,, distance.   The degraded signai wa5 ^^^^ ^ ^^ ^^ 

tr.n.fom ^.n by the üse of . trlangular  |ow.pM> ^^^    ^  rMuittnt 

TH. Projection .l9.rlth.  ,. c.p.6,. of ut.M.m, . priori   information 

«ro  ,„ ce.ta.n  reg,o„s.  the a,gorlthm Can  include tMs know,edge  ^ ^ 

r..tor.t,on p.ocess.    Sever,a cases ^ tre^ with varioüs ^ of a 

Pr.or,   ,„formatloo.    The a,9oritHm„as capaMe of reso.vin, th.   ,mage  ,„„ 

— net p^ses .,t.r a fevv iterat,ons-     ,„ ^^  ^ ^^ ^ ^ 

a Pr.or,  ^,  iwo^ the performance-    The ^^ ^ ^^  ^ 

-V with  the  ,east.sqüares  invarsa  mter methodi ^^^ ^ ^ ^^ 

T-o-^aosiona,   ,mages of 128x,2e po,nts „er,; a,so tested_    ^  ^ 

-re d|giti2ed wr.lon. of photograph5_     ^ ^   ^^  ^  ^ 

the  mage .fur a certain nunber of  iterations      Fa.h 
iterations.     Each complete   iteration  re- 

dii.res about  12 seconds of computation  time      Th.      •■ 
r cation  time.    The optimum number of Iterations 

is  a subjective quantity. 

AH th, above experiments Involved Imacre d.gradatlons which „ere simulated 

- the computer. ,„ our recent wort., we app„ed the projection a,gor,.hm to an 

apticaily deeded  image.    SpeciaUy. we too. an  i^e degraded by ca^ra »,„„ 
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(Fig. 1(a)), digitized it, and fed it into the computer.  Then it is restored 

by Wiener inverse filtering and by the projection algorithm.  The results are 

shown in Figs. 1(b) and (c).  The projection algorithm gave a much better 

restored image. 
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ESTIMATING THE IMPULSE RESPONSE OF A DEGRADING SYSTEM 

Brian O'Connor and T. S. Huang 

One major problem in image processing is the estimating of the impulse 

response of a degrading system.  Once this is found a  inverse filter or other 

algorithm can be found and applied to the image to en  nate the effects of the 

degrading system.  The estimation problem car be broker, down into two cases; 

in the first, the ideal and degraded images are assumed to be known to some 

extent; and in the second, only the degraded picture is present.  This latter 

case is called blind deconvolution.  Introduced below is a technique which can 

be applied to either of the above cases, but should find wider use in the 

latter.  This method incorporates image segmentation with a modification of 

Kncx's method [1] for multiframe processing to estimate both the magnitude and 

phase of the degrading system function. 

Let v(x,y) be an ideal image which is degraded by a system with impulse 

response h(x,y).  The observed image is vc(x,y) = v*h which can be segmented 

into many rectangular strips, vc.Cx.y), | = 1,...,N.  If the extent of h(x,y) 

is small compared to the duration of the segments vc.(x,y), then vc.(x,y): 

v.^h.  This implies VC.Cf,,^) = V, (f}, i^) .H(f, »f^; furthermore, [VC, (f^f ) 1 

" IVVVI'I^WI  a^ /.VC.^.fp =^Vi(frf2) ^(f,,^). To 

estimate |H(fj f^| the square magnitudes of the N segments are averaged, so 

H (f,'f2)l -^ivw ^NWI1" N "''"l *' ]''2'     'N -t^'|»'2' 

In some applications the light distribution of the N regions of the original 

image vary sufficiently fast and are sufficiently different from one another 

so  that ü M^fj.^i  Is approximately a constant.  This implies that the 

approximation of the magnitude Is independent of original scene. 

-T«-'-V  — 1 



In order to estimate the phase of the system function an average auto- 

correlation is performed. 

z vc.(frf2).vc-F(fi+Afrf2+Af2) 

■   ^ VWVfi+Afrf2+AV] H(frf
2)-H(f1+Af|>f2+Af2) 

After  some manipulations we  find 

Uvc^f^f^.^Cf,^,^)]^^^^)^^  Af|t 

ISVC, (f,.f2).VC.(f].Af,.f2+Af2) | [UV, (f, >f2).Vi (f1+Af,,f2+Af2)] 

HCfpfJ-^f  +Af,,f  +Af   ) 

that   the   imaginary part of  the complex  logarithm gives  an estimate of  the 

Phase   in   terms of phase  differences.      In  the above manner  the  phase differences 

between every pair of adjacent points  can be measured over  the whole  transform 

plane. 

Programs  are being written  to simulate  the above   technique and should give 

better   results   than  procedures which estimate only  the magnitude of  the de- 

grading  system function.     A problem could arise   in  the  phase estimation since 

it   is  determined by adding phase differences   together,  which means   that  the 

Phase errors add.   thus  producing  the  variance of  the  final   error  to   increase 

1inearly. 
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MISSILE TRACKING ALGORITHMS 

T. S. Huang and G. Y. Tang 

This project is motivated by the real-time video tracking problems as 

the U.S. Army White Sands Missile Range.  The missile movie frames were 

supplied to us by Dr. Alton Gilbert of WSMR. 

Our preliminary experimentation has indicated that it is possible in many 

cases to detect and locate a missile by processing single scan lines.  More 

specifically, we have found that it is possible to determine whether a scan 

line passes through a missile (and the location of the crossing) by cross- 

correlating the scan line with a paradign.  This opens up the possibility of 

very fast algorithms which scan selectively instead of full frame.  Solid state 

imagors, such as surface acoustical wave and charged-transfer devices, are 

particularly suitable for selective scanning. These devices can also be used 

to do crosscorrelation at extremely high speed. 

I)  Missile Tracking 

We describe an example of missile tracking using single scan line cross- 

correlations. We used 10 evenly spaced scan lines over the missile frame shown 

in Fig. 1, and crosscorrelate each scan line with the paradign shown in Fig. 2. 

By applying a suitable criterion to the correlation results, we were able to 

determine which scan lines passed through the missile and the crossing loca- 

tions.  Then, among the scan lines that passed through the missile, we picked 

ojt the uppermost and lowermost scan lines; and we scan at a finer spacing 

than before a few lines above the uppermost and a few lines below the lower- 

most to locate the noise and the tail end of the missile (again by single scan 

line correlations).  The resuU Is shown In Figs. 3 and *♦. 

2)  Initial Acquisition of the Missile 

In the WSMR application, we know beforehand where the missile will be 
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inched.  We can aim „ur lma!)or ., the ,aunch „,. ^ ^^ ^^^^ ^^ 

do.n. crosscorre.ation) .. hIgh speed one or severe, Unes above th. „I..,,. 

s.te. Then, „e can detect the „,„.„. as soon as ,t TOves throo9h these scan 

lines, and try to track It from that point on. 

Sk 

1 i"'*1 ♦■ ■•  ; ■ -       ; 



Figure   I    Original   Picture 

Figure 2     Waveform of  Preset  Paradigm 

55 



Figure 3 Target Being Taken Out.  Dark 
Area is the Parallelogram Found 

Figure k    Tdryet Isolated from the Background 

56 

^—~ — j -- -•  . ..  



INFORMATION EXTRACTION FROM yRAYS IMAGES* 

G. Y. Tang 

Gamma ray cameras have been used by physicians for many years ro  detect 

diseases^  The grey tone distribution of the picture obtained by the gamma ray 

camera contains most of the information about the mass density of the patient's 

tissues or muscles. As a matter of fact, the gamma ray picture is a projec- 

tion of the mass density of the object illuminated by a radiation source. 

Physicians make their judgement by comparing an unknown picture with some 

known diseased patterns.  However, since the rich varieties of diseased pat- 

terns and the mutual influence between symptoms, the procedure of making 

judgement is not a straightforward work. Usually it takes two or three years 

training plus experience.  In some cases it is even required a joint judga- 

nent of several physicians. The complexity in judgement does not mean that 

the request from patients should be ignored. A computer-aided-judgement- 

maklng algorithm is therefore necessary in order to alleviate the physician's 

burden and to serve more patients.  This is also the ultimate goal of studying 

gamma ray pictures., 

in this report, an attempt has been made to employ pattern recognition 

techniques to solve the problem of computer-aideded judgement making for gar™ 

ray oictures. As shown in Fig. 1. a pattern recognition system consists of 

three stages in sequence, i.e.. pattern analysis, feature selection and 

classification.  Pattern analysis is to see what is the most informative part 

which can be obtained.  Feature selection Is to throw away some unimportant 

measures and to retain only those which are sufficiently representative so 

that the computational effort in classification is reduced and that the 

probability of wrong classification due to the disturbance of unrelevant data 

-s reduced too. The purpose of classification is to assign an attribute for 

each input pattern. 

A-r. . 
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Some pattern analysis experiments whcih have been done are described in 

the first section of this report.  In the second section some possible ap- 

plications of these measurements for the purpose of combined aid system 

recognition are discussed briefly. 

I.  Pattern analysis. 

A gamma ray picture is represented by a matrix' {I (i ,j)} i = 1 N , 

j=l,...,N where N and N are the spatial extention of the gamma ray picture 

in x and y directions.  l(i,j) is the (i,j) entry of that matrix.  Its value 

corresponds to the intensity of radiation energy at (i,j) position.  In our 

experiment, N = N = Gb,   l(i,j) varies between 0 and 2 -1.  Statistically a x   y 

gamma ray picture is an outcome of a Poisson's process. So P(l(i,j) = x) = 

-m(i,j) ,. .»x 
— mU>j;  , P(l(i,j) ■ x)Ax is the probability of 1(1,j) of value x. 

xl 
Poisson's distribution indicates that, for the area of higher mean value, the 

variance or the noise is larger too.  In order to combat the noise disturbance, 

a smooth technique is required. A two dimenr> ionai symietri^: low*pa*S nito.r 

is chosen .:or this purpose«  After the noise has been cleared out, we threshold 

the picture by a preset threshold.  The thresholded picture has only two grey 

tones 1 and 0.  1 is assigned to those picture points with l(i,j) ^ T, T is the 

threshold, 0 is otherwise.  The thresholded picture is denoted by l'(i,j)„  A 

simple edge detector can be applied to I'O,]) in order to get contours.  The 

edge detector works as If ll'O,;) - l'(i + l,j)| > 0 then it reports an edge 

point at (i,j), otherwise it reports no edge points.  Fig. 2 shows the contour 

obtained by setting threshold T=8000 and by using the foregoing edge detector. 

Notice that the left lobe and the right lobe are not distinguishable. This 

gives ui a hint to try a Iowe/ threiüold T=^500.  Fig. 3 displays the contour 

thus obtained.  Both lobes are not shown. A third trial Is a threshold of 
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value 7000.  Flg. k  displays the result.  We can see that the two lobes are 

present, but the left one is rather small.  More than that, the deformity 

which contains most of the symptomatic information is not significant.  All 

these evidences indicate the difficulty to set up a good threshold so that an 

informative contour may be obtained.  In order to combat that, we proposed an 

approach which should achieve that I) It guarantees two separate contours for 

the two lobes 2) it subjects to a better tolerance for the variation of the 

threshold(This means, for example T=/*500 and T=7000 should generate about the 

same contours).  The basic frame for the proposed method is to break up the 

entire picture into several regions.  Then we locate these two regions which 

enclose the two lobes.  New threshold on the original picture for each of 

these two regions is set up according to the local grey level distribution. 

Finally, a contour follower is employed to get the coordinates of the points 

on the contour.  The foregoing edge detector Is used for the purpose of dis- 

playing. 

More specifically, the proposed method can be described as: 

(0 Picking up a threshold T. 

(2) An operation T, is defined as 
n 

yu) ■ i if KIJ) IT 

Th(i,j) = 0 If l(i,j) <T 

and I' - Th(|) means r(i,j) = yi.j).  So |- is a matrix.  I(i,j) which is 

the picture matrix has been defined before, 

(3) An operation E, which Is the eJge detector, is defined as: 

E(i.j) = I if |r(i,j) - l'(f+l,j)| > 0 for all i and J 

E(i,j) = 0 otherwise, where r ■ Th (I) and I" = E(r) means 

'"(i.j) = E(l,j) for all l.j. 
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CO From I", we obtain two points TOP, BGTTOM as 

TO? -   (IJ.JJ) such that Edj.Jj) - I anü J, Is the maximum of 

all j such that E(l j) ■ ], 

BOTTOM - (l2,j2) such that E(l2,j2) = 1 and j.. Is the minimum 

of alI j such that E(l,j) = 10 

(5) A line M Is defined as 

M "    {(i.J)|   j  = j (jj+J^),   I  =  1 Nx} 

(6) A   line  M)   Is  defined as 

1 M,   "    «!.J)|j  = j i}2+j (J,+J2).   i  =   I N  } 

(7) An operation C on each horizontal line, I.e. i = const, is defined as 

1  N 

C(j = const) -«-  EX r(|,j) Xi 
Nj  1 = 1 

where N. is the number of I's on the line j = const on picture I'.  This 

operation locates the centroid on each horizontal line. 

(8) For lines lying between M and M,, we can apply operation C to each of 

them. Then we obtain a set of Mj-M+l points (xj.y,), (x^y.,) (^ 

I   * 
^W- The first component Is obtained by operation C, the second is the 

one defining the horizontal line. 
M — M-4-1 

(9) A line Y = AX + b Is found such that h iy^-b)2 |. minimun. 

Y is corresponding to the second element and X Is corresponding to the first 

element in our l(l.j), r(i.j), r'(|,j) notations. 

(10) A line segment R:Y = ax+b where i (J^^) < y^^ is thus obtained. 

(M) The picture Is now segmented into four components denoted by A, 8, C, 

D. A is tha background.  B is what is below the line M but not the background. 

C is what is to the left of R and what Is above M, but not the background. D 

is the same as C except to the right of R. fig. 5 shows the segmentation from 
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Fiq,   2.     Flg.   6  shows   the   segmentation   from  Fig.   3.     Fig.   7  shows   the  seg- 

mentation   from  Fig.   '*. 

(12)   From now on,  we  are only   interested   in  area  C and  D.     For each of 

these   two areas,  we  define  a histogram from which  a new threshold  can Le 

Obtained.     The common  maximum and minimum  in areas  C,   and  D are   located. 

They  are  denoted  by  MAX and  MIN  respectively.     The  histogram  H    and  H     is 
c d 

defined  as 

Hc(k)  =  #    ((i,j)|k^     UUhHIiJ    XlCELL<k+I.-(i,j)EC}  and 
MAX-MIN 

H ,00  -#    {(lj)|k^        l(i^)"MIN C0CELL<k+l.   (i.j)   E  D} 
MAX-MIN 

where  k ■   1 ,2,... , I CELL,   and ft denotes  the number of elements.     The new  thres- 

holds  T^ and Td   for   the  area C and  D  respectively are: 
k 

T    = min    { k|     Z  h(i)   >  N   } 
c M -   c 

k 
T, = min    { k|     E  h(i)   >_ N   } 

i = l d 

Nr - ^ (i,j)|(i,j)   CO  X  PER  I 

Nd  =  ^ (i,j)|(i,j)   EC}  X  PER 2 

PER   1   and  PER 2  are   two  preset numbers which  are 0 <PER   1  <I   and 0    < 

PER  2.   <■   1. 

(13) Thresholding and edge detecting same as (2) and (3) are applied to 

areas C and D with new thresholds T and T respectively.  (PER 1 = PER 2 ■ 0.M 

Fig. 8 shows the contours obtained from Fig. 2.  Fig. 9 shows the contours 

obtained from Fig. 3.  Fig. 10 shows the contours obtained from Fig. k. 

Notice that we can alwsys obtain two separate contours by the three 
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different thresholds, i.e., T = ^500, 7000, 8000.  Also, the contours from 

T = ^500 and T " 7000 are exactly the same and the contour from T = 8000 is 

very similar to that fron T = ^500 and T = 7000.  Especially for the good 

lobes [the right one], they are almost indist•nguishable. 

OM A contour follower is designed to replace the edge detector so that 

it will always report a closed contour no matter what the shape of the contour. 

The input to the contour follower is a window of size 3x3.  The center of the 

window [0 on Fig. 11] 's already known on the contour.  One of the eight 

neighbors of th« center is known on the contour too.  The function of the 

contour follower is to find a point which is supposed to be the next point 

in the eight neighbors around the center.  Then the window moves to and 

centers at that point.  Repeating the same procedure, we cai obtain tne 

whole contour.  The way to locate the next point from the eight neighbors of 

the center is simply looking at the eight neighbors ii. counterclockwise sense 

starting with the neighbor already known on the contour.  For example, on 

Fig. 12, searching starts with 2 and then 3,^,5 until 6 where the rsxt point 

is found.  The contour then reports the coordinate of the next point (i,j) 

anr1 the direction of moving which is cod^d into 8 numbers as shown on Fig. 11. 

Table 1 lists the two contours obtai fed by setting T = 8000 and PER 1 = 

0.4 and PER 2 = 0.4.  The edge detection is replaced by the contour follower. 

The corresponding direction code is attached too.  Fig. 14 shows the scatter 

distribution of the direction code on Table 1. 

(15) The contours obtainec from the unfiltered picture by the same method 

as to obtain Fig. 10 is shown on Fig. 13 where T = 8000, PER 1 = PER 2 = 0.4. 

Obviously these two contours are more noisy. 

Fig. 15 shows the contours by setting T « 8000, PER 1 = 0.6, PER 2 - 0.4 

from a filtered picture by the same method as to obtain Fig. 10. 
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Fig. 16 shows the contour by setting T = 8000, P£R ) = 0.15, PER 2 = O.b 

from a filtered picture by the same method as to obtain Fig. 10. 

If. Di icuss ions. 

in the previous section, rt shows the possibility to obtain two separate 

contours from a  gamma ray picture by the proposed method with which a set of 

coordinates (x^y.), i = l....,N is reported.  How to use this set of coordinates 

to make a classifier is another problem.  One way to tackle thfs problem is to 

perform a transformation on the coordinates so that, after transformation, the 

new coordinates should be 1) invariant for translation of the object, Z) 

invariant for the rotation of the object, 3) invariant for the reflection, 

k)   invariant for the swelling or shrinking of the object.  Several methods ha 

have been studied in order to achieve them.  Locating the centroid and using 

the centroid as the origin of a polar coordinate system is one way.  The use 

of Fourier transformation by treating each point (X.,Y.) as a complex number 

Xj+Jy|i J = »'"I is another way.  Ihe curvature may be a useful quantity too. 

However, whatever the transformation is, we will have a new set of coordinates 

K'V' i = , M-  Generally M is smaller than N.  A discriminant function 

f is defined on u^v.), i = l M such that f (",.*!'VV •• °'VV - 0 

indicate disease, and f(^ ^,u2,v2,...,uM,uM) > indicates no disease f may be 

a linear or a nonlinear function.  Supervised or non-supervised (learning 

techniques may be used to get f with a set of training data which we know if 

any of them is good or diseased. 

Accompanying with experiments, further studies of transformations and 

discriminant functions are necessary to complete the system. The syntactic 

pattern recognition technique may be adapted too.  How acceptable of the 

syntactic approach depends mainly on experimental results.  It is hard to 
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Predict.  A combination of statistical methods and syntactic methods may 

bring in a more accurate diagnosis.  The employment of different pattern 

recognition techniques to this particular set of data is the major task in 

the future. 

^ 
Pattern 

Analysis 

Feature 

Selection 
Classification 

Fig. 1  System fo r pattern recognition 

6^ 

. 

""***■■ ,. .. ^Wpr^TTT»" 



i 

I 
! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
1 
1 
I 
I 
1 
! 

• * # • » « 

t« 
** 

• » 
»a 

« * « « « « f 
f »» v 

<* * 
»< < 

« « 
« * 

» 
* 
i 

« 

♦ 

• 

it* 

• • 

m       » 
t   < > ti» 

i 

• ♦ 
« 

« 
out 

4 i-  » *.1 ^ «  «  Ä  ; 

• « 
» ♦« 

« R r.             « 

fl r! H « » tf 

•■ 

• 
♦ 
• 
* 

• 
♦ 

• 
• 
• 
• 

♦ 
• 

* 
• 
» 

*» 
«it 

It fclt- 
ec » 

♦ «« ( 
• •»««B «•«I!« 

• ft *####4 # 

i 

I 
. 
1 
I 
I 
I 
I 
i 
I 
I 
1 
! 
1 
i 
I 
I 

• I 
I 
I 
J 
1 
J 
I 
I 
I 
: 
i 
i 
i 
i 
i 
i 
i 
i 
I 
: 
i 
i 
i 
I 
; 

I 
I 
I 
I 
l 
i 
I 
I 
I 
I 
I 
I 
I 
i 
: 

1 
i 

Fig. 2 Edges obtained by setting threshold 
equal 80CC. 
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68 

--*., 



A 
«»«    tv- «a« 

•»        »• « « » 
• « » •»* 

» «• »• 
• • •• «4 

• »t »tt 
* «♦ •• 

t                ♦» « 

«• •• 
«• »• 
ft • . 

c 

»ftftft« 

I 
I 
I 
I 
I 
I 
I 
I 
r 
i 
i 
r 
i 
i 
t 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

« 

* 
» 

» 

» 
« 

> *» •« 

♦ 
« 
ft 
« 

» 

« 
• » 

• ft 

» a r. t 
» * i -a 

# t- ft # ft N 

*• 
ft ft 
ft» 
ft« 
ft • 
• •   > 
• ft 
ft t 

»« 
ft * 
ft ft 
« ft 
ft» 
• ft 

. f. « .f * * * » 

n i' - >: « « ft > i 

D 
»ft 

« 
»» 

* 

B L 

• > 
• » 

• » 

» 

» < It <.■■»«(.-» » ; • ); « 1, , K « .* 

» f n« t v » > « « » !■ « > 

* 

» 

t 

• » 

» 
* 

» 

« 

ft 

t^ ft i) * f a & i 

« • ♦ » u « « ■. 

rf ■ v J 

..... I 

»• 
ft ft 
»•» 

ft« ft 
ft » t » > 

«ft 
ftft ft 

>«« Sftft»*ft ]!»«•» 

Fiy.  6    Four  regions obtaineo  from Fig.  3. 

69 



I 
I 
I 
1 
J 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
t 
r 
i 
i 

* A • J 

C 
« 
* 

» 

* 

• •     • • 
»»       •« 

«« 
#• 
«t 
• « 
«» 
• » 
• » 

• •« 

• <«» 
»  «< 
• »t 
« «* 
* «> 
« • » 
* «* 

•    *» 
• •» 
• »« 
• « » 

»« » » » » 
« « m • 

A 
*»* 

«» 

D ** 

•     «II 

t 

? II 

«* 
* 

•  » 
* * I* « ." II 

rir.-tf-BÄaoatt. nmtiit)i»«<m(i.i(ii<x 

«• 

«» 
« 

ß 

• » 
«* 

» > * 

»« !» ill» 

i r t ^i » »it 

« 

» 

« 
» 

# 

» 
* 

« » V • « 1 

»•••*##*##« 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
! 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
1 

* « V » 4 I 

tt «*« * J 

I 
i 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

' I 
I 
1 
1 
I 

Fig.   7    Four regions obtained  from Fig.  i». 

70 



» ** t *■ .. '■. i. * * 

» ft (« « * ft tt ft 
# t « ft 6 

« « • 4 • ft« 
» * > «ft 

• »» ft > 
* « « ♦ » 

» ««f« ft ft 
«                     «*> «»« ft» 

•                         1 ft » ft ft 
• • # il « ft f » ft 
» • « B * ft ft « 

• ♦ ft ft » ft ft «ft 
• < « ft ft ft « k ft # 
• « ft | ft ft ft« 

> • ft ft » ft i « 
1 « ft ft ft « « 

« •*•««« ft ft u ft « • 
« # ft » * « « 
« • ft ft it» ft « 
• «» « » ft ft « 

** * « ft« « « « 
« ft ft « ft « 
• ft ft » ft ft « ft ft «* 

«*»«««i* ft ft ## 1 ',  ft 1 « 
* » « » • « « * « ««»»a«»»*;«««^« a):«s»s s »il ft ;* -.; *< ft * ft »i: z l. l u n M t ft ft ft ft lift ft 

* * « »«<#»*»*«<■ IH14!«-»(Ht»J«f • • t* K «##««• 1 si« ^ ft ft ft i *<■ t' ft {> ft 3 ft ft ft 

• « 
• « » 
» » 
» • 
• • 
• ■ • 
• 
• 

* 
«• 

i 
l 

• 
• 
• • 

« 
• 
« 

i » • 
• • 
«« • 
♦ » «» » 

M « 
»• , « 
• « * 
«* » 

»» • 
• »» • * 

| 
ft 

♦ » 
!ft 

i «ft * «» 
«««»««»lift 

I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I ft Vft  J 

• ft« ft I 

I 
I 
I 
I 
1 
I 
1 
I 
: 
i 
i 
i 
i 
i 
i 
i 
i 
i 
! 
I 
I 
I 
I 
I 
I 
1 

Fig.   8    Contours obtained  from Fig.   2. 
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Fig.   10    Contours obtained  from Fig.  4. 
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SATELLITE IMAGERY NOISE REMOVAL 

O.R. Mitchell and P.L. Chen 

I.  Introduction. 

This recent work is a continuation of the previous report "Satellite 

Imagery Noise Removal" [l].  We are using homomorphic flltenng techniques to 

remove multiplicative noise effects such as cloud and atmospheric turbulence 

in ERTi imagery. 

Our approach is to estimate the noise power spectrum by classifying each 

region of the noisy picture according to the level of the noiie present using 

the multispectral data analysis software system developed by LARS. Once the 

noise power spectrum is obtained, an optimum filter is derived to separate the 

signal and noise.  Information is then extracted from the recovered signal 

using multispectral classification techniques. 

II.  Theory of Cloud Removal. 

Assume an image of the earth is produced when a light cloud cover exists 

over the region of interest as in Fig. 1. 

Sun 
11luminat ion 

Attenuated 
M luminat ion a I 

Satellite 
Scanner 

s(x,y)=alr(x,y)a(x,y) 

+ l[l-t(x(y)] 

cloud transmission 
t(x,y) 

yr ground reflection r(x,y) 

■ . v .. 

. 
Fig. 1  Satellite Scanner Image Component! 
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We have assumed that the cloud reflection of sunlight plus the cloud absorption 

equals one and that the illumination is approximately constant on the earth 

surface.  The image received at the scanner is 

s(x,y) - alr(x,v) t(x.y) + l[l-t(x,y)] < | 

where r(x,y) is the signal and t(x,y) is the noise. 

s(x,y) = lt(x,y) [ar(x,y) -1] + I 

Takino the logarith 

log[i-s(x,y)] = log I + log t(x,y) + log[1-ar (x,y) ] 

Notice that now the signal and noise are additive so that an optimum linear 

fi1ter can be applled. 

The technique is as follows:    may be approximated as the brightest point 

in the image [corresponds to t=0].  The original data is therefore inverted by 

subtracting the intensity at each point from the maximum intensity in s(x.y). 

The logarithm is then taken of the inverted data.  Now the signal and noise 

are additive.  The power spectrum of the noise t(x,y) is estimated using tech- 

niques discussed in the next section and a Wiener filter is used to get the 

estimate of log [1-ar(x.y)].  The signal is then recovered by taking the anti- 

log, inverting the intensities, and increasing the contrast. 

III.  The Classification of Cloud. 

The analysis of clouds as a multiplicative noise in ERTS imagery is im- 

plemented by using the classification technique at LARS.  In this report the 

classification of cloud is based on the amount of cioud cover located at each 

pixel. 

The LARS classifier processes multIspectral data one point at a time 

classifying unknown data using training statistics developed from pre-classi- 

fied data. 
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. ■.. :., :.:..        ■ ■        ■ 

Examination of data 
quali ty 

1 
Selection of candidate 

training samples 

Clustering 

Association of cluster 
classes and information 

classes 

> 

Statistics (mean and 
covariance matrix) 

Calculate mean and 
covariance of 
training samples 

Classi fication 
execution 

Information and 
feature extraction 

Separabi1i ty 
informat ion 

Fig. 2  Flow chart of LARS classification 
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Fig. 3 A section of Chicago and vicinity 
LARS Run 7300 3600 
Channel b 
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Flg.   h    Classified picture of  Fig.   3 
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The basic assumptions for classification are as follows: 

(1) All class probabilities are equal. 

(2) The probability density function of training samples is Gaussian, 

^e decision criterion for classification is the so-called maximum likel 

hood rule.  The unknown data point is compared with all of the training 

classes and then is assigned to the most likely class.  The detailed informa- 

tion about classification algorithm can be found in LARS information notes 

[2,3]. 

A general p.ocedure for the classification of clouds is described in the 

block diagram in Fig. 2. 

Consider Fig. 3.  This is a section of original ERTS-1 multispectral 

scanner data (channel k).     Obviously, a large number of classes of clouds can 

be defined, however, only four kinds are chosen.  These are Full cloud (F), 

Most cloud (M). Half cloud (H). and Small cloud (•). Water and ground are 

defined to be a class of no cloud. 

Fig. k  shows a classified version of Fig. 3.  It is hard to compare these 

two pictures, because the classified picture is based on all four channels. 

The description of cloud as we defined in this manner has proved to be 

very successful when one sees the training and test field performance. 

Tables 2-1, 2-2 show these results. 

IV.  Noise Extraction. 

Fig. 5 shows a small section of Fig. I,, which has size of S^h   (line 

838-964-2. Col. 1220-1346-2). 

Notice that a classification map (Fig. 5) Is simply different integers 

representing each class.  Since these are six spectrally distinct classes, 

irtegers 1 through 6 are used to represent them.  Fig. 6 shows this integer 
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Table 2-!  Training Field Performance 

Group No.  of 
Samps 

Pet. 
Corct 

Number of 
Fulcld    Mose 

Samples 
Id    Hahc 

Cl 
Id 

asoifled 
Smlcld 

Into 
Water Ground 

Fulcld 3 100.0 3 0 0 0 0 0 
Moscld 2 100.0 C 2 0 0 0 0 
Hafcld 6 100.0 0 0 6 0 0 0 
Smlcld 15 100.0 0 0 0 15 0 0 
Water 6 100.0 0 0 o 0 6 0 
Ground 6 100.0 0 

3 

0 

2 
- 

0 

6 
- 

0 

15 

0 6 

38 6 

Overa! 1 
Performance 38/ 38)  = 100. 0 

(From LARS ^PRINTRESULTS) 

Table 2-2 Test Field Percentage (PCT.) 

Group No.   Of 
Samps Fulcld Moscld 

f'ercentac 
Hafcld 

ge of samp 
Smlcld 

es  classi 
Water 

fied   into 
Ground 

Fulcld 10 100.0 0.0 0.0 0.0 0.0 0.0 
Moscld 2 100.0 0.0 0.0 0.0 0.0 0.0 
Hafcld 10 0.0 0.0 80.0 0.0 0.0 20.0 
Smlcld 36 0.0 0.0 0.0 100.0 0.0 0.0 
Water 8 0.0 0.0 0.0 0.0 100.0 0.0 
Ground 6 0.0 0.0 0.0 0.0 0.0 100.0 

Overa11 
Perfornance 

72 16.7 

68/ 

0.0 

72) = 3k.i* 

11.1 50.0 11.1 11.1 

(From LARS '"'PRINTRESULTS) 
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classified map. A reasonable guess about the percentage transmission of re- 

flected energy passing through the cloud is listed in the fol 
lowing table. 

Table 3-1 Cloud blocking information. 

Type of Clo ud Pe rcentag e of Transmission 

Full Cloud 10? 

Most Cloud 30% 

Half Cloud 50% 

Small Cloud 75% 

Water ]Q0% 

Ground ]00% 

Consider Fig. 6 and Table 3-1 together, a pattern for noise only can be 

constructed simply by transforming each coded integer into its corresponding 

percentage value.  Fig. 7 shows the picture for the noise only. 

^ -t 

Fig.   7    Picture of cloud   (Half and  Small)  and 
no cloud   (Water and Ground). 
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classified map. A reasonable guess about the percentage transmission of re- 

flected energy passing through the cloud is listed in the following table. 

Table 3-1 Cloud blocking information. 

Type of Cloud 

Full Cloud 

Most Cloud 

Half Cloud 

Small Cloud 

Water 

Ground 

Percentage of Transmission 

]0% 

30% 

50% 

751 

100% 

100% 

Consider Fig. 6 and Table 3-1 together, a pattern for noise only can be 

constructed simply by transforming each coded integer into its corresponding 

percentage value.  Fig. 7 shows the picture for the noise only. 

Fig. 7 Picture of cloud (Half and Small) and 
no cloud (Water and Ground). 
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V. Honiomorphic Filtering Process. 

The two dimensional filtering to reduce the cloud effect is accomplished 

by weighting each point in the discrete Fourier Transform of the logarithm of 
S. 

the picture grey levels by a non casual filter function of the form » .. 
i  i 

where S. and N. are the vlaues of the signal and noise power spectrums at the 

particular frequency point being considered. Following the filtering process 

we take the inverse DFT and then exponentiate to obtain the filtered picture. 

See Fig. 8„ 

VI. Results and Conclusions. 

The filter function tends to smooth the picture resulting In a loss of 

sharp edges.  However, the synthesis of high-passed picture to filtered pic- 

ture will compensate this disadvantage. 

The overall performance of the filtering processes, described in this 

report, will be evaluated by classifying the filtered picture and comparing 

with the ground true map of the same area. This will be done In the near 

future. We are also converting the filtering operation to a three dimensional 

filter, to take advantage of the four spectral channels In the filter. 
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POP-11 SOFTWARE DEVELOPMENTS 

James J. Besemer 

The major accomplishment on the PDP-ll this year was the installation of 

a new operating system called UNIX.  It was developed at Bell Labs, and is 

distributed by Western Electric.  ,he University of Illinois engineered the 

system modifications to allow it to communicate with the ARPANET.  Our version 

of the system has been fully operational since early October, and has been 

operating on a 2A hour per day schedule since the first of the year.  We are 

quite pleased with the new system. With the availability of UNIX, most of the 

graduate students and other researchers have been working on transporting their 

software from other sites to our PDP-11.  Other accomplishments include the 

(earlier) installation of an ELF Telnet program, which allowed us our first 

access to the ARPANET, and the development of other supporting software. 

In July, with cooperation from the staff at the II.LIAC-IV Center for 

Advanced Computation, our first running ELF TELNET server was installed.  It is 

a copy of the ELF software, custom tailored to our system.  The current version 

supports TELNET through our terminals and FTP to our line-printer.  Since we 

expected to replace the system with NETWORK-UNIX, we did not expand the ELF to 

use the other devices in our system.  Since UNIX did not have the network soft- 

ware installed when it first arrived, ELF served as our primary entry to the 

network.  However, when the full, NETWORK-UNIX system was operational, ELF 

became obsolete, and is rearly used, except in those instances where hardware 

problems disallow the use of UNIX, yet still allow ELF to run. 

Our use of the ARPANET remains small.  Most of our research has been 

carried out either on our own PDP system, or at the Laboratory for the Applica- 

tion of Remote Sensing and the Purdue campus central facility.  These latter 
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sites have the large, scientific machines required for our research (two CDC 

eSOO's  and an IBM 360).  In the future, we plan to use 'he 360/91 at UCLA and 

the ILLIAC-IV. 

The development of PDP-11 software over the year can be considered 

quarter by quarter.  During the first quarter our primary efforts were directed 

towards checking out the hardware and getting the DOS system operational.  This 

was complicated by the fact that there were many hardware problems, and by the 

fact that the DOS system did not arrive until the middle of January.  This de- 

layed the correction of the hardware problems because many of them were not 

discovered until elfter DOS was delivered.  We also spent time the first quarter 

familiarizing ourselves with the operation of the equipment and the DOS soft- 

ware.  During the serond quarter we conc-rned ourselves with developing basic 

software for DOS which allowed access to the non-standard devices, like the 

COMTAL color display and the VERSATEK electrostatic printer, and other basic 

software to use these devices.  We also were investigating the various network 

software products which were available at that time.  We were considering both 

ANTS and ELF.  By the end of the second quarter, we had enough information about 

ANTS arc ELF, and enough experience with the ARPANET to be able to begin working 

on the installation of a network software system.  Most of the third quarter 

was spent first by debugging the IMP-interface hardware, and working on getting 

ELF running on our machine.  The software portion of this work was complicated 

by the fact that we did rj* have access to the network except via a noisy line 

to Illinois.  Our original plan was to get a magnetic tape containing the C.'S 

sources, and compile them on our PDP-11, using DOS. Unfortunate.>, the DOS 

system was not able to compile the (very large) ELF sources, and this was not 

discovered until several abortive attempts were made.  About the time that the 

hardware was finished (late May), we accepted an offer from the ILLIAC-IV IAC 
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to help us (iet a copy of their ELF running on our machine.  With their ^sis- 

tance, we got the network software running in early July.  It was about this 

time when we heard about UNIX, and the network software developed for it by 

University of Illinois. We researched it, and decided that for a machine as 

large as ours, that ELF wasted most of the equipment we had.  UNIX, on the 

other hand, allowed us to access the network, and to perform local processing, 

simultaneously.  Thus most of the last quarter was spent installing, improving 

and testing the UNIX system. We were very pleased. UNIX, used only for net- 

work access turned out to be better than ELF, and used only for local process- 

ing was better than DOS or RSX.  Taken as a whole, it seems to be the best 

system available for a moderately sized system like ours. This opinion seemr 

to oe shared by -thf  PDP-11 network users, as several of the old ELF-followers 

have switched to NETWORK-UNIX.  UNIX supports FORTRAN, PDP-11 assemply language, 

and a hrgh-level language, similar to PL/1, called "C".  It also supports several 

"compiler-compilers" and has a computer language translator, which will be a 

tremendous aid to us as we translate out CDC and IBM software to run on the 

PDP-11.  That UNIX is an easy system to use is supported by the fact that to 

develop the software to run our COMTAL display and the electrostatic printer 

has only about 20^ of the development time for the equivalent software for DOS. 

This next year we are continuing the development of more UNIX support 

software, and converting old programs to run under UNIX; and in particular, we 

are starting to do most of our new research projects on the PDP-11 UNIX system. 
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I QTY Manufacturer 

3 Beehive; Licet. 

2 Tex. Inst. 

1 Digi-Data 

DEC 

Fabritek 

Versatek 

Comtal 

Data Printer 

True-Data 

Tektronix 

DEC 

Current Equipment Configuration 
February, 1976 

Description 

"Super-Bee" Terminals 

"Silent 700" Terminals 

Industry standard magnetic tape system; 
2, 9-track and 1, 7-track drives; one each 

NRZI and phase-encoded formatters/controllers 

Dual-drive DECtape unit 

RP03 disk drive (^0 million characters) 

96K-word auxiliary memory system 
(6AK bought by ARPA, 32K by NASA) 

Electrostatic matrix printer 

Color picture display 

132 column, 600 L.P.M. line printer 

Punched card reader 

Model i»0l0, graphics display 

PDP-11A5 computer system; system includes: 
32K memory 

FPP-ll floating point processor (NSF money) 
H960 extension mounting cabinet 
3 - small peripheral mountings blocks (DD-II) 
I UN!BUS repeater/expander 
DHII, 16-line terminal multiplexor 
KWll-p programmed clock 
"ANTS" - type PDP-11/IMP interface 
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MISSION 

of 
Rome Air Development Center 

R/IDC is the principal  AFSC orqanization charqcd with 
planninq and executing  the USAF exploratory and advanced 
development programs  for  information  sciences,   intelli- 
gence,   command,   control  and communications  tcchnolo<fi/, 
products and services oriented to the needs of the USAF, 
Primary RADC mission areas arc communications,   electro- <J 
magnetic guidance and control,  surveillance of ground ^ 
and aerospace objects,   intelligence data collection and C 
handling,   information system technology,  and electronic , 
reliability,  m-yintainability and compatibility.     RADC Q 
has mission responsibility as assigned by AFSC for de- ^2 
monstration and acquisition of selected subsystems and Ij 
systems in the intejlicence, mapping,   charting,  command, $ 
control and communications areas. i 
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